LA-UR-98-544 Approved for public release; distribution is unlimited. | Title: | ENDF62MT, A Multi-temperature Neutron Library for MCNF | |---------------|--| | Author(s): | S. C. Frankle, Los Alamos National Laboratory,
Los Alamos, NM 87545 | | Submitted to: | For distriubtion on the WWW for the MCNP community. | ### Los Alamos NATIONAL LABORATORY Los Alamos National Laboratory, an affirmative action/equal opportunity employer, is operated by the University of California for the U.S. Department of Energy under contract W-7405-ENG-36. By acceptance of this article, the publisher recognizes that the U.S. Government retains a nonexclusive, royalty-free license to publish or reproduce the published form of this contribution, or to allow others to do so, for U.S. Government purposes. Los Alamos National Laboratory requests that the publisher identify this article as work performed under the auspices of the U.S. Department of Energy. Los Alamos National Laboratory strongly supports academic freedom and a researcher's right to publish; as an institution, however, the Laboratory does not endorse the viewpoint of a publication or guarantee its technical correctness. # Los Alamos #### memorandum Applied Theoretical & Computational Physics Division Transport Methods Group, XTM Los Alamos, New Mexico 87545 то/мs: Distribution From/MS: S. Frankle, XTM / MS B226 Phone/FAX: 5-6461 / 5-5538 Symbol: XTM:96-153 Date: April 11, 1996 #### SUBJECT: ENDF62MT, A Multi-temperature Neutron Library for MCNP (Rev.0) A multi-temperature neutron data library has been produced for use with MCNP. Seven temperatures (77, 400, 500, 600, 800, 900, 1200 °K) for three nuclides, ²³⁵U, ²³⁸U, and ²³⁹Pu are available on the library as a companion to ENDF60 (300°K). The entries for this library are a part of the latest Table 1 for Appendix G available on the WWW or in hardcopy, and are listed below. We have used the same source evaluations as were used for the ENDF60 library, Release 2 of each nuclide. However, a tighter fractional tolerance on thinning was used for ENDF62MT, so the data files are larger in size than the corresponding 300° data files in the ENDF60 library. Sample input decks for the NJOY runs are included with this memorandum. The standard QA procedures were used for each data file in this library: - * the NJOY interpretative output files was examined - * all cross-section data and heating numbers were examined graphically - * a number of codes were run to check the threshold energies, secondary energy distributions for both neutrons and photons, etc. - and sample MCNP problems were run Figures 1-6 show example plots of the total neutron cross section for ²³⁵U, ²³⁸U, and ²³⁹Pu over two energy regions, 10⁻⁷-10⁻⁵ and 1x10⁻⁵-2x10⁻⁵ MeV, at 300, 600, 900, and 1200 °K. One can see the most notable difference due to thinning in the ENDF60 data library for ²³⁸U in Figure 4. Currently, this data library is available on CFS the secure network, but is not publicly available on the open. The library should only be distributed to those with support contracts with XTM. The library is stored on CFS under /x6data/ce/special/multitemp, and will become available in the standard XSDIR file during the next update this summer. This library may undergo changes, such as the addition of other temperatures and nuclides, prior to its public release. ## Appendix G Information for the ENDF62MT Neutron Data Library (Rev. 0) | ZAID | Atomic Wt.
Ratio | Library
Name | Source | Date of Eval. | Temp.
(°K) | Length
(words) | Num. of
Energies | Emax
(MeV) | GPD | Nubar | | |---|--|--|---|--|---|---|--|--|--|--|--| | 92235.11c
92235.12c
92235.13c
92235.14c
92235.15c
92235.16c
92235.17c | 233.0250
233.0250
233.0250
233.0250
233.0250
233.0250
233.0250 | endf62mt
endf62mt
endf62mt
endf62mt
endf62mt
endf62mt
endf62mt | ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2 | 1989
1989
1989
1989
1989
1989 | 77
400
500
600
800
900
1200 | 696,398
411,854
379,726
353,678
316,622
300,278
269,062 | 78,912
43,344
39,328
36,072
31,440
29,397
25,495 | 20
20
20
20
20
20
20
20 | yes
yes
yes
yes
yes
yes | both
both
both
both
both
both | | | 92238.11c
92238.12c
92238.13c
92238.14c
92238.15c
92238.16c
92238.17c | 236.0060
236.0060
236.0060
236.0060
236.0060
236.0060 | endf62mt
endf62mt
endf62mt
endf62mt
endf62mt
endf62mt | ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2 | 1993
1993
1993
1993
1993
1993 | 77
400
500
600
800
900
1200 | 621,385
456,593
433,681
414,185
386,305
372,625
348,137 | 74,481
53,882
51,018
48,581
45,096
43,386
40,325 | 20
20
20
20
20
20
20
20 | yes
yes
yes
yes
yes
yes | both
both
both
both
both
both | | | 94239.11c
94239.12c
94239.13c
94239.14c
94239.15c
94239.16c
94239.17c | 236.9986
236.9986
236.9986
236.9986
236.9986
236.9986
236.9986 | endf62mt
endf62mt
endf62mt
endf62mt
endf62mt
endf62mt | ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2 | 1993
1993
1993
1993
1993
1993 | 77
400
500
600
800
900
1200 | 568,756
418,556
395,964
377,116
350,292
338,236
312,572 | 62,522
43,747
40,923
38,567
35,214
33,707
30,499 | 20
20
20
20
20
20
20
20 | yes
yes
yes
yes
yes
yes | both
both
both
both
both
both | | | Corresponding entries for the ENDF60 Neutron Data Library | | | | | | | | | | | | | 92235.60c
92238.60c
94239.60c | 233.0250
236.0060
236.9986 | endf60
endf60
endf60 | ENDF/B-VI.2
ENDF/B-VI.2
ENDF/B-VI.2 | 1989
1993
1993 | 294
294
294 | 289,975
206,322
283,354 | 28,110
22,600
26,847 | 20
20
20 | yes
yes
yes | both
both
both | | Input deck for creating pendf tape with NJOY based on that used for the ENDF60 library (²³⁹Pu). ``` 0 6 moder 20 -21 reconr -21 -22 *pendf tape for endf/b-vi.2 pu-239b*/ 9437 7 0 / .002 0. 7 / *94-pu-239b from endf/b-vi.2 tape 117 (young, lanl) */ *processed with the njoy nuclear data processing system*/ *see original endf/b-vi tape for details of evaluation*/ *the following reaction types are added*/ mt221 free thermal scattering*/ total heating kerma factor*/ mt301 mt443 kinematic kerma*/ 0/ broadr -22 -23 9437 9 0 1/ .002/ 0 77 300 400 500 600 800 900 1200 / 0/ unresr -21 -23 -24 9437 9 7 1 0 77 300 400 500 600 800 900 1200 / 1e10 1e4 1e3 300 100 30 10 0/ heatr -21 - 24 - 25/ 9437 1/ 443/ stop ``` Input deck for creating ACE data file and interpretative output file with NJOY based on that used for the ENDF60 library at 1200 $^{\circ}$ K ($^{^{239}}$ Pu). ``` 0 6 moder 20 -21 acer -21 -25 0 31 32 1 0 1 .17/ *94-pu-239b from endf/b-vi.2*/ 9437 1200.0/ .01/ / acer 0 31 33 34 35 7 1 2 .17/ *94-pu-239b from endf/b-vi.2*/ stop ``` 11/14/96 U - 235 MT = 1 TOTAL ZAID = 92235.60C $From\ ENDF602$ ZAID = 92235.14C $From\ ENDF62MT$ ZAID = 92235.16C $From\ ENDF62MT$ ZAID = 92235.17C $From\ ENDF62MT$ 11/14/96 Pu - 239 MT = 1 TOTAL ZAID = 94239.60C $From\ ENDF602$ ZAID = 94239.14C $From\ ENDF62MT$ ZAID = 94239.16C $From\ ENDF62MT$ ZAID = 94239.17C $From\ ENDF62MT$